Robust deep co-saliency detection with group semantic

N/ACitations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

High-level semantic knowledge in addition to low-level visual cues is essentially crucial for co-saliency detection. This paper proposes a novel end-to-end deep learning approach for robust co-saliency detection by simultaneously learning high-level group-wise semantic representation as well as deep visual features of a given image group. The inter-image interaction at semantic-level as well as the complementarity between group semantics and visual features are exploited to boost the inferring of co-salient regions. Specifically, the proposed approach consists of a co-category learning branch and a co-saliency detection branch. While the former is proposed to learn group-wise semantic vector using co-category association of an image group as supervision, the latter is to infer precise co-salient maps based on the ensemble of group semantic knowledge and deep visual cues. The group semantic vector is broadcasted to each spatial location of multi-scale visual feature maps and is used as a top-down semantic guidance for boosting the bottom-up inferring of co-saliency. The co-category learning and co-saliency detection branches are jointly optimized in a multi-task learning manner, further improving the robustness of the approach. Moreover, we construct a new large-scale co-saliency dataset COCO-SEG to facilitate research of co-saliency detection. Extensive experimental results on COCO-SEG and a widely used benchmark Cosal2015 have demonstrated the superiority of the proposed approach as compared to the state-of-the-art methods.

Cite

CITATION STYLE

APA

Wang, C., Zha, Z. J., Liu, D., & Xie, H. (2019). Robust deep co-saliency detection with group semantic. In 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 (pp. 8917–8924). AAAI Press. https://doi.org/10.1609/aaai.v33i01.33018917

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free