Abstract
The recognition heuristic is a noncompensatory strategy for inferring which of two alternatives, one recognized and the other not, scores higher on a criterion. According to it, such inferences are based solely on recognition. We generalize this heuristic to tasks with multiple alternatives, proposing a model of how people identify the consideration sets from which they make their final decisions. In doing so, we address concerns about the heuristic's adequacy as a model of behavior: Past experiments have led several authors to conclude that there is no evidence for a noncompensatory use of recognition but clear evidence that recognition is integrated with other information. Surprisingly, however, in no study was this competing hypothesis-the compensatory integration of recognition-formally specified as a computational model. In four studies, we specify five competing models, conducting eight model comparisons. In these model comparisons, the recognition heuristic emerges as the best predictor of people's inferences. © 2010 The Psychonomic Society, Inc.
Cite
CITATION STYLE
Marewski, J. N., Gaissmaier, W., Schooler, L. J., Goldstein, D. G., & Gigerenzer, G. (2010). From recognition to decisions: Extending and testing recognition-based models for multialternative inference. Psychonomic Bulletin and Review, 17(3), 287–309. https://doi.org/10.3758/PBR.17.3.287
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.