Residual polar motion caused by coseismic and interseismic deformations from 1900 to present

14Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

We challenge the perspective that seismicity could contribute to polar motion by arguing quantitatively that, in first approximation and on the average, interseismic deformations can compensate for it. This point is important because what we must simulate and observe in Earth Orientation Parameter time-series over intermediate timescales of decades or centuries is the residual polar motion resulting from the two opposing processes of coseismic and interseismic deformations. In this framework, we first simulate the polar motion caused by only coseismic deformations during the longest period available of instrumental seismicity, from 1900 to present, using both the CMT and ISC-GEM catalogues. The instrumental seismicity covering a little longer than one century does not represent yet the average seismicity that we should expect on the long term. Indeed, although the simulation shows a tendency to move the Earth rotation pole towards 133°E at the average rate of 16.5mmyr-1, this trend is still sensitive to individual megathrust earthquakes, particularly to the 1960 Chile and 1964 Alaska earthquakes. In order to further investigate this issue, we develop a global seismicity model (GSM) that is independent from any earthquake catalogue and that describes the average seismicity along plate boundaries on the long term by combining information about presentday plate kinematics with the Anderson theory of faulting, the seismic moment conservation principle and a few other assumptions. Within this framework, we obtain a secular polar motion of 8mmyr-1 towards 112.5°E that is comparable with that estimated from 1900 to present using the earthquake catalogues, although smaller by a factor of 2 in amplitude and different by 20° in direction. Afterwards, in order to reconcile the idea of a secular polar motion caused by earthquakes with our simplest understanding of the seismic cycle, we adapt the GSM in order to account for interseismic deformations and we use it to quantify, for the first time ever, their contribution to polar motion. Taken together, coseismic and interseismic deformations make the rotation pole wander around the north pole with maximum polar excursions of about 1 m. In particular, the rotation pole moves towards about Newfoundland when the interseismic contribution dominates over the coseismic ones (i.e. during phases of low seismicity or, equivalently, when most of the fault system associated with plate boundaries is locked). When megathrust earthquakes occur, instead, the rotation pole is suddenly shifted in an almost opposite direction, towards about 133°E.

Cite

CITATION STYLE

APA

Cambiotti, G., Wang, X., Sabadini, R., & Yuen, D. A. (2016). Residual polar motion caused by coseismic and interseismic deformations from 1900 to present. Geophysical Journal International, 205(2), 1165–1179. https://doi.org/10.1093/gji/ggw077

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free