Field Study on Correlation between CO2 Concentration and Surface Soil CO2 Flux in Closed Coal Mine Goaf

6Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Self-heating of coal mine goaf or shallow coal seams can release an outbreak of unimaginable pollution disaster under suitable circumstances. As an indicator gas, CO2 is always used to determine the coal spontaneous combustion state during the self-heating process. Based on this, the paper investigated the influence of abandoned coal mine goaf CO2 on the surface environment by measuring the CO2 concentration in the borehole connected to the goaf and CO2 flux on the soil surface. Furthermore, rainfall and atmospheric temperature effects are discussed to illustrate the correlation between the CO2 concentration and surface soil CO2 flux in the closed mine goaf. Subsequently, the tracer gas experimental method is employed to analyze the effect of air leakage from an open-pit slope on CO2 flux. The experimental results demonstrated that the distribution of CO2 concentration in the borehole confirms the continuous diffusion of goaf CO2 onto the surface. The value of CO2 flux in the goaf is significantly higher than that of a normal area. Temperature is one of the primary factors that affect the CO2 flux on the field. Air leakage from the slope promotes the surface soil-overlying goaf CO2 diffusion. The study provides important reference data for the assessment of the mining area field environment and the determination of the spontaneous combustion risk of the residual coal in the goaf.

Cite

CITATION STYLE

APA

Wang, Y., Zhang, X., Zhang, H., & Sasaki, K. (2019). Field Study on Correlation between CO2 Concentration and Surface Soil CO2 Flux in Closed Coal Mine Goaf. ACS Omega, 4(7), 12136–12145. https://doi.org/10.1021/acsomega.9b00927

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free