Abstract
Background: Venous thromboembolism (VTE) is a preventable, common vascular disease that has been estimated to affect up to 900,000 people per year. It has been associated with risk factors such as recent surgery, cancer, and hospitalization. VTE surveillance for patient management and safety can be improved via natural language processing (NLP). NLP tools have the ability to access electronic medical records, identify patients that meet the VTE case definition, and subsequently enter the relevant information into a database for hospital review. Objective: We aimed to evaluate the performance of a VTE identification model of IDEAL-X (Information and Data Extraction Using Adaptive Learning; Emory University)—an NLP tool—in automatically classifying cases of VTE by “reading” unstructured text from diagnostic imaging records collected from 2012 to 2014. Methods: After accessing imaging records from pilot surveillance systems for VTE from Duke University and the University of Oklahoma Health Sciences Center (OUHSC), we used a VTE identification model of IDEAL-X to classify cases of VTE that had previously been manually classified. Experts reviewed the technicians’ comments in each record to determine if a VTE event occurred. The performance measures calculated (with 95% CIs) were accuracy, sensitivity, specificity, and positive and negative predictive values. Chi-square tests of homogeneity were conducted to evaluate differences in performance measures by site, using a significance level of.05. Results: The VTE model of IDEAL-X “read” 1591 records from Duke University and 1487 records from the OUHSC, for a total of 3078 records. The combined performance measures were 93.7% accuracy (95% CI 93.7%-93.8%), 96.3% sensitivity (95% CI 96.2%-96.4%), 92% specificity (95% CI 91.9%-92%), an 89.1% positive predictive value (95% CI 89%-89.2%), and a 97.3% negative predictive value (95% CI 97.3%-97.4%). The sensitivity was higher at Duke University (97.9%, 95% CI 97.8%-98%) than at the OUHSC (93.3%, 95% CI 93.1%-93.4%; P
Author supplied keywords
Cite
CITATION STYLE
Wendelboe, A., Saber, I., Dvorak, J., Adamski, A., Feland, N., Reyes, N., … Raskob, G. (2022). Exploring the Applicability of Using Natural Language Processing to Support Nationwide Venous Thromboembolism Surveillance: Model Evaluation Study. JMIR Bioinformatics and Biotechnology, 3(1). https://doi.org/10.2196/36877
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.