Chemiluminescence and superoxide production by myeloperoxidase deficient leukocytes

224Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

Abstract

The role of superoxide anion and myeloperoxidase dependent reactions in the light emission by phagocytosing polymorphonuclear leukocytes has been investigated using leukocytes that lack myeloperoxidase, inhibitors azide, superoxide dismutase), and model systems. The authors' earlier finding that oxygen consumption, glucose C1 oxidation, and formate oxidation are greater in polymorphonuclear leukocytes that lack myeloperoxidase than in normal cells during phagocytosis has been confirmed with leukocytes from 2 newly described myeloperoxidase deficient siblings. Although the maximal rate of superoxide anion production by myeloperoxidase deficient leukocytes is not significantly different from that of normal cells, superoxide production falls off less rapidly with time so that with prolonged incubation, it is greater in myeloperoxidase deficient than in normal cells. Chemiluminescence by myeloperoxidase deficient leukocytes during the early postphagocytic period however, is decreased. Light emission by normal leukocytes is strongly inhibited by both superoxide dismutase and azide, whereas that of myeloperoxidase deficient leukocytes, while still strongly inhibited by superoxide dismutase is considerably less sensitive to azide. Zymosan, the phagocytic particle employed in the intact cell system, considerably increased the chemiluminescence of a cell free superoxide H2O2 generating system (xanthine xanthine oxidase) and a system containing myeloperoxidase, H2O2 and chloride. Light emission by the xanthine oxidase model system is strongly inhibited by superoxide dismutase and is not inhibited by azide, whereas the myeloperoxidase dependent model system is strongly inhibited by azide but only slightly inhibited by superoxide dismutase. These findings suggest that light emission by phagocytosing polymorphonuclear leukocytes is dependent on both myeloperoxidase catalyzed reactions and the superoxide anion, and involves in part the excitation of the ingested particle. These studies are discussed in relation to the role of the superoxide anion and chemiluminescence in the microbicidal activity of the polymorphonuclear leukocyte.

Cite

CITATION STYLE

APA

Rosen, H., & Klebanoff, S. J. (1976). Chemiluminescence and superoxide production by myeloperoxidase deficient leukocytes. Journal of Clinical Investigation, 58(1), 50–60. https://doi.org/10.1172/JCI108458

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free