Exploring the Dynamic Impact of Extreme Climate Events on Vegetation Productivity under Climate Change

4Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

As global warming continues to intensify, the relationship between diurnal temperature range (DTR) and vegetation productivity continues to change over time. However, the impact of DTR changes on vegetation activities remains uncertain. Thus, further study about how DTR changes affect the physiological activities of plants is also urgently needed. In this study, we employed copula function theory to analyze the impact of DTR on Normalized Difference Vegetation Index (NDVI) values during the spring, summer, and autumn seasons from 1982 to 2014 for various land types in the Inner Mongolia Plain (IMP), China. The results showed that the relationship between DTR and NDVI in the IMP was characterized by correlation at the upper tail and asymptotical independence at the lower tail. This demonstrated that the DTR had little effect on NDVI when they reached their minimum value. However, it has a significant impact on NDVI at its maximum values. This study provides valuable insight into the dynamic impact of monthly DTR on different land use types under climate change.

Cite

CITATION STYLE

APA

Xu, H., Tan, J., Li, C., Niu, Y., & Wang, J. (2023). Exploring the Dynamic Impact of Extreme Climate Events on Vegetation Productivity under Climate Change. Forests, 14(4). https://doi.org/10.3390/f14040744

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free