Analysis of novel hyperosmotic shock response suggests ‘beads in liquid’ cytosol structure

21Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

Abstract

Proteins can aggregate in response to stresses, including hyperosmotic shock. Formation and disassembly of aggregates is a relatively slow process. We describe a novel instant response of the cell to hyperosmosis, during which chaperones and other proteins form numerous foci with properties uncharacteristic of classical aggregates. These foci appeared/disappeared seconds after shock onset/removal, in close correlation with cell volume changes. Genome-wide and targeted testing revealed chaperones, metabolic enzymes, P-body components and amyloidogenic proteins in the foci. Most of these proteins can form large assemblies and for some, the assembled state was pre-requisite for participation in foci. A genome-wide screen failed to identify genes whose absence prevented foci participation by Hsp70. Shapes of and interconnections between foci, revealed by super-resolution microscopy, indicated that the foci were compressed between other entities. Based on our findings, we suggest a new model of cytosol architecture as a collection of numerous gel-like regions suspended in a liquid network. This network is reduced in volume in response to hyperosmosis and forms small pockets between the gel-like regions.

Cite

CITATION STYLE

APA

Alexandrov, A. I., Grosfeld, E. V., Dergalev, A. A., Kushnirov, V. V., Chuprov-Netochin, R. N., Tyurin-Kuzmin, P. A., … Agaphonov, M. O. (2019). Analysis of novel hyperosmotic shock response suggests ‘beads in liquid’ cytosol structure. Biology Open, 8(7). https://doi.org/10.1242/bio.044529

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free