This manuscript addresses the problem of data driven model based economic model predictive control (MPC) design. To this end, first, a data-driven Lyapunov-based MPC is designed, and shown to be capable of stabilizing a system at an unstable equilibrium point. The data driven Lyapunov-based MPC utilizes a linear time invariant (LTI) model cognizant of the fact that the training data, owing to the unstable nature of the equilibrium point, has to be obtained from closed-loop operation or experiments. Simulation results are first presented demonstrating closed-loop stability under the proposed data-driven Lyapunov-based MPC. The underlying data-driven model is then utilized as the basis to design an economic MPC. The economic improvements yielded by the proposed method are illustrated through simulations on a nonlinear chemical process system example.
CITATION STYLE
Kheradmandi, M., & Mhaskar, P. (2018). Data driven economic model predictive control. Mathematics, 6(4). https://doi.org/10.3390/math6040051
Mendeley helps you to discover research relevant for your work.