We revisit the non-thermal dark matter (DM) production during the thermalization and reheating era after inflation. The decay of inflaton produces high-energy particles that are thermalized to complete the reheating of the Universe. Before the thermalization is completed, DM can be produced from a collision between the high-energy particles and/or the ambient plasma. We calculate the DM abundance produced from these processes for the case where the cross section of the DM production is proportional to the n-th power of the center of mass energy. We find that the collision between the high-energy particles is almost always dominant for n ≳ 4 while it is subdominant for n≲2. The production from the ambient plasma is dominant when n≲3 and the reheating temperature is of the order of or larger than the DM mass. The production from a collision between the high-energy particle and the ambient plasma is important for n ≲ 2 and the reheating temperature is much lower than the DM mass.
CITATION STYLE
Harigaya, K., Mukaida, K., & Yamada, M. (2019). Dark matter production during the thermalization era. Journal of High Energy Physics, 2019(7). https://doi.org/10.1007/JHEP07(2019)059
Mendeley helps you to discover research relevant for your work.