Abstract
A primary goal of sleep research is to understand the molecular basis of sleep. Although some sleep/wake-promoting circuits and secreted substances have been identified, the detailed molecular mechanisms underlying the regulation of sleep duration have been elusive. Here, to address these mechanisms, we developed a simple computational model of a cortical neuron with five channels and a pump, which recapitulates the cortical electrophysiological characteristics of slow-wave sleep (SWS) and wakefulness. Comprehensive bifurcation and detailed mathematical analyses predicted that leak K+ channels play a role in generating the electrophysiological characteristics of SWS, leading to a hypothesis that leak K+ channels play a role in the regulation of sleep duration. To test this hypothesis experimentally, we comprehensively generated and analyzed 14 KO mice, and found that impairment of the leak K+ channel (Kcnk9) decreased sleep duration. Based on these results, we hypothesize that leak K+ channels regulate sleep duration in mammals.
Author supplied keywords
Cite
CITATION STYLE
Yoshida, K., Shi, S., Ukai-Tadenuma, M., Fujishima, H., Ohno, R. I., & Ueda, H. R. (2018). Leak potassium channels regulate sleep duration. Proceedings of the National Academy of Sciences of the United States of America, 115(40), E9459–E9468. https://doi.org/10.1073/pnas.1806486115
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.