Abstract
© 2018 The Authors. Published under the terms of the CC BY 4.0 license In the post-genomic era, thousands of putative noncoding regulatory regions have been identified, such as enhancers, promoters, long noncoding RNAs (lncRNAs), and a cadre of small peptides. These ever-growing catalogs require high-throughput assays to test their functionality at scale. Massively parallel reporter assays have greatly enhanced the understanding of noncoding DNA elements en masse. Here, we present a massively parallel RNA assay (MPRNA) that can assay 10,000 or more RNA segments for RNA-based functionality. We applied MPRNA to identify RNA-based nuclear localization domains harbored in lncRNAs. We examined a pool of 11,969 oligos densely tiling 38 human lncRNAs that were fused to a cytosolic transcript. After cell fractionation and barcode sequencing, we identified 109 unique RNA regions that significantly enriched this cytosolic transcript in the nucleus including a cytosine-rich motif. These nuclear enrichment sequences are highly conserved and over-represented in global nuclear fractionation sequencing. Importantly, many of these regions were independently validated by single-molecule RNA fluorescence in situ hybridization. Overall, we demonstrate the utility of MPRNA for future investigation of RNA-based functionalities.
Cite
CITATION STYLE
Shukla, C. J., McCorkindale, A. L., Gerhardinger, C., Korthauer, K. D., Cabili, M. N., Shechner, D. M., … Rinn, J. L. (2018). High‐throughput identification of RNA nuclear enrichment sequences. The EMBO Journal, 37(6). https://doi.org/10.15252/embj.201798452
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.