Abstract
A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H2O and BigBottle RAD-H2O. The results have shown good agreement between this method and the standard methods. © 2013 The Author(s).
Author supplied keywords
Cite
CITATION STYLE
Lee, K. Y., & Burnett, W. C. (2013). Determination of air-loop volume and radon partition coefficient for measuring radon in water sample. Journal of Radioanalytical and Nuclear Chemistry, 298(2), 1359–1365. https://doi.org/10.1007/s10967-013-2546-3
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.