In this article, we propose a new method that determines an efficient numerical procedure for solving second-order fuzzy Volterra integro-differential equations in a Hilbert space. This method illustrates the ability of the reproducing kernel concept of the Hilbert space to approximate the solutions of second-order fuzzy Volterra integro-differential equations. Additionally, we discuss and derive the exact and approximate solutions in the form of Fourier series with effortlessly computable terms in the reproducing kernel Hilbert space W23[a,b]⊕W2.3[a,b]. The convergence of the method is proven and its exactness is illustrated by three numerical examples.
CITATION STYLE
Gumah, G. N., Naser, M. F. M., Al-Smadi, M., & Al-Omari, S. K. (2018). Application of reproducing kernel Hilbert space method for solving second-order fuzzy Volterra integro-differential equations. Advances in Difference Equations, 2018(1). https://doi.org/10.1186/s13662-018-1937-8
Mendeley helps you to discover research relevant for your work.