Purpose: Artificial intelligence (AI) technologies have enabled precise three-dimensional analysis of individual muscles on computed tomography (CT) or magnetic resonance images via automatic segmentation. This study aimed to perform three-dimensional assessments of pelvic and thigh muscle atrophy and fatty degeneration in patients with unilateral hip osteoarthritis using CT and to evaluate the correlation with health-related quality of life (HRQoL). Methods: The study included one man and 43 women. Six muscle groups were segmented, and the muscle atrophy ratio was calculated volumetrically. The degree of fatty degeneration was defined as the difference between the mean CT values (Hounsfield units [HU]) of the healthy and affected sides. HRQoL was evaluated using the Western Ontario and McMaster Universities Osteoarthritis (WOMAC) index and the Japanese Orthopaedic Association Hip Disease Evaluation Questionnaire (JHEQ). Results: The mean muscle atrophy rate was 16.3%, and the mean degree of muscle fatty degeneration was 7.9 HU. Multivariate correlation analysis revealed that the WOMAC stiffness subscale was significantly related to fatty degeneration of the hamstrings, the WOMAC physical function subscale was significantly related to fatty degeneration of the iliopsoas muscle, and the JHEQ movement subscale was significantly related to fatty degeneration of the hip adductors. Conclusion: We found that fatty degeneration of the hamstrings, iliopsoas, and hip adductor muscles was significantly related to HRQoL in patients with hip osteoarthritis. These findings suggest that these muscles should be targeted during conservative rehabilitation for HOA and perioperative rehabilitation for THA.
CITATION STYLE
Iwasa, M., Takao, M., Soufi, M., Uemura, K., Otake, Y., Hamada, H., … Okada, S. (2023). Artificial intelligence-based volumetric analysis of muscle atrophy and fatty degeneration in patients with hip osteoarthritis and its correlation with health-related quality of life. International Journal of Computer Assisted Radiology and Surgery, 18(1), 71–78. https://doi.org/10.1007/s11548-022-02797-8
Mendeley helps you to discover research relevant for your work.