In the present investigation, fucoxanthin—one of the major pigments in diatoms—has been extracted from Nanofrustulum shiloi SZCZM1342, and its reducing efficiency in the biogenesis of gold nanoparticles (GNPs) was checked. Fucoxanthin extracted from golden-brown cells of N. shiloi was compared to the healthy, growing biomass of N. shiloi and standard fucoxanthin after separate exposure to 25 mg L−1 aqueous hydrogen tetrachloroaurate solutions at room temperature. Isolated and standard fucoxanthin were found to be able to reduce gold ions within 12 h whereas, the whole biomass turned pink in color after 72 h of reaction. The synthesized particles were char-acterized by UV-vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). UV–vis spectroscopy of purple-colored suspensions showed the absorption band at approximately 520–545 nm, indicating a strong positive signal for GNP synthesis. The SEM study revealed the deposition of GNPs on siliceous frustules of metal-treated diatom cells. The TEM analysis confirmed the GNPs synthesized by whole biomass are triangular, spherical and hexagonal in nature, whereas the particles produced by extracted and standard fucoxanthin are all spherical in nature. This study demonstrates the involvement of fucoxanthin in the reduction of gold ions and subsequent production of gold nanospheres.
CITATION STYLE
Roychoudhury, P., Dąbek, P., Gloc, M., Golubeva, A., Dobrucka, R., Kurzydłowski, K., & Witkowski, A. (2021). Reducing efficiency of fucoxanthin in diatom mediated biofabrication of gold nanoparticles. Materials, 14(15). https://doi.org/10.3390/ma14154094
Mendeley helps you to discover research relevant for your work.