Parasitoids diversity in organic sweet pepper (capsicum annuum) associated with basil (ocimum basilicum) and marigold (tagetes erecta)

Citations of this article
Mendeley users who have this article in their library.


The sweet pepper (Capsicum annuum L.) is one of the most important crops in Brazilian farming. Many insect are related to this crop, compromising the quantity and quality of the fruit, representing a production problem. Vegetable diversification is one of the main elements that can be managed for suppressing undesirable insect populations in organic production, once that supports the presence of natural enemies. The basil Ocimum basilicum L. and the marigold Tagetes erecta L. are attractive and nutritious plants for parasitoids, being important candidates for diversified crops. This study evaluated the parasitoids attracted by the association of basil and marigold to organic sweet pepper crop. The experiment comprised three treatments: a) sweet pepper monoculture; b) sweet pepper and basil intercropping; c) sweet pepper and marigold intercropping. Hymenopteran parasitoids were collected over 14 weeks. 268 individuals from 12 families and 41 taxa were collected. Sweet pepper monoculture, sweet pepper-basil intercropping, and sweet pepper-marigold intercropping hosted 40, 98, and 130 individuals and richness of 24, 24, and 23, respectively. Furthermore, the insects of greater abundance in the basil and marigold were different to those collected in the monoculture. The number of parasitoids increased in the associations of sweet pepper with basil and marigold, providing advantages in the use of vegetable diversification for the organic pepper crops management.




Souza, I. L., Tomazella, V. B., Santos, A. J. N., Moraes, T., & Silveira, L. C. P. (2019). Parasitoids diversity in organic sweet pepper (capsicum annuum) associated with basil (ocimum basilicum) and marigold (tagetes erecta). Brazilian Journal of Biology, 79(4), 603–611.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free