Human serum albumin (HSA) is the frontline antioxidant protein in blood with established antiinflammatory and anticoagulation functions. Here we report that COVID-19-induced oxidative stress inflicts structural damages to HSA and is linked with mortality outcome in critically ill patients. We recruited 39 patients who were followed up for a median of 12.5 days (1-35 days), among them 23 had died. Analyzing blood samples from patients and healthy individuals (n=11), we provide evidence that neutrophils are major sources of oxidative stress in blood and that hydrogen peroxide is highly accumulated in plasmas of non-survivors. We then analyzed electron paramagnetic resonance (EPR) spectra of spin labelled fatty acids (SLFA) bound with HSA in whole blood of control, survivor, and nonsurvivor subjects (n=10-11). Non-survivors’ HSA showed dramatically reduced protein packing order parameter, faster SLFA correlational rotational time, and smaller S/W ratio (strong-binding/weakbinding sites within HSA), all reflecting remarkably fluid protein microenvironments. Following loading/unloading of 16-DSA we show that transport function of HSA maybe impaired in severe patients. Stratified at the means, Kaplan–Meier survival analysis indicated that lower values of S/W ratio and accumulated H2O2 in plasma significantly predicted in-hospital mortality (S/W≤0.15, 81.8% (18/22) vs. S/W>0.15, 18.2% (4/22), p=0.023; plasma [H2O2]>8.6 mM, 65.2% (15/23) vs. 34.8% (8/23), p=0.043). When we combined these two parameters as the ratio ((S/W)/[H2O2]) to derive a risk score, the resultant risk score lower than the mean (< 0.019) predicted mortality with high fidelity (95.5% (21/22) vs. 4.5% (1/22), logrank c2 = 12.1, p=4.9x10-4). The derived parameters may provide a surrogate marker to assess new candidates for COVID-19 treatments targeting HSA replacements and/or oxidative stress.
CITATION STYLE
Badawy, M. A., Yasseen, B. A., El-Messiery, R. M., Abdel-Rahman, E. A., Elkhodiry, A. A., Kamel, A. G., … Ali, S. S. (2021). Neutrophil-mediated oxidative stress and albumin structural damage predict covid-19-associated mortality. ELife, 10. https://doi.org/10.7554/eLife.69417
Mendeley helps you to discover research relevant for your work.