The catalytic domain of overexpressed protein kinase C (PKC)-δ mediates phorbol 12-myristate 13-acetate (PMA)-induced differentiation or apoptosis in appropriate model cell lines. To define the portions of the catalytic domain that are critical for these isozyme-specific functions, we constructed reciprocal chimeras, PKC-δ/εV5 and -ε/δV5, by swapping the V5 domains of PKC-δ and -ε. PKC-δ/εV5 failed to mediate PMA-induced differentiation of 32D cells, showing the essential nature of the V5 domain for PKC-δ's functionality. The other chimera, PKC-ε/δV5, endowed inactive PKC-ε with nearly all PKC-δ's apoptotic ability, confirming the importance of PKC-δ in this function. Green fluorescent protein (GFP)-tagged PKC-δV5 and -ε/δV5 in A7r5 cells showed substantial basal nuclear localization, while GFP-tagged PKC-ε and -δ/εV5 showed significantly less, indicating that the V5 region of PKC-δ contains determinants critical to its nuclear distribution. PKC-ε/δV5-GFP showed much slower kinetics of translocation to membranes in response to PMA than parental PKC-ε, implicating the PKC-εV5 domain in membrane targeting. Thus, the V5 domain is critical in several of the isozyme-specific functions of PKC-δ and -ε.
CITATION STYLE
Wang, Q. J., Lu, G., Schlapkohl, W. A., Goerke, A., Larsson, C., Mischak, H., … Mushinski, J. F. (2004). The V5 Domain of Protein Kinase C Plays a Critical Role in Determining the Isoform-Specific Localization, Translocation, and Biological Function of Protein Kinase C-δ and -ε. Molecular Cancer Research, 2(2), 129–140. https://doi.org/10.1158/1541-7786.129.2.2
Mendeley helps you to discover research relevant for your work.