Abstract
Detection of mechanical stress is essential for diverse biological functions including touch, audition, and maintenance of vascular myogenic tone. PIEZO1, a mechano-sensing cation channel, is widely expressed in neuronal and non-neuronal cells and is expected to be involved in important biological functions. Here, we examined the possibility that PIEZO1 is involved in the regulation of synovial sarcoma cell-viability. Application of a PIEZO1 agonist Yoda1 effectively induced Ca2+ response and cation channel currents in PIEZO1-expressing HEK (HEK-Piezo1) cells and synovial sarcoma SW982 (SW982) cells. Mechanical stress, as well as Yoda1, induced the activity of an identical channel of conductance with 21.6 pS in HEK-Piezo1 cells. In contrast, Yoda1 up to 10 µM had no effects on membrane currents in HEK cells without transfecting PIEZO1. A knockdown of PIEZO1 with siRNA in SW982 cells abolished Yoda1-induced Ca2+ response and significantly reduced cell cell-viability. Because PIEZO1 is highly expressed in SW982 cells and its knockdown affects cell-viability, this gene is a potential target against synovial sarcoma.
Author supplied keywords
Cite
CITATION STYLE
Suzuki, T., Muraki, Y., Hatano, N., Suzuki, H., & Muraki, K. (2018). PIEZO1 channel is a potential regulator of synovial sarcoma cell-viability. International Journal of Molecular Sciences, 19(5). https://doi.org/10.3390/ijms19051452
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.