Heavy iron in large gem diamonds traces deep subduction of serpentinized ocean floor

29Citations
Citations of this article
89Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Subducting tectonic plates carry water and other surficial components into Earth’s interior. Previous studies suggest that serpentinized peridotite is a key part of deep recycling, but this geochemical pathway has not been directly traced. Here, we report Fe-Ni–rich metallic inclusions in sublithospheric diamonds from a depth of 360 to 750 km with isotopically heavy iron ( δ56Fe = 0.79 to 0.90‰) and unradiogenic osmium (187Os/188Os = 0.111). These iron values lie outside the range of known mantle compositions or expected reaction products at depth. This signature represents subducted iron from magnetite and/or Fe-Ni alloys precipitated during serpentinization of oceanic peridotite, a lithology known to carry unradiogenic osmium inherited from prior convection and melt depletion. These diamond-hosted inclusions trace serpentinite subduction into the mantle transition zone. We propose that iron-rich phases from serpentinite contribute a labile heavy iron component to the heterogeneous convecting mantle eventually sampled by oceanic basalts.

Cite

CITATION STYLE

APA

Smith, E. M., Ni, P., Shirey, S. B., Richardson, S. H., Wang, W., & Shahar, A. (2021). Heavy iron in large gem diamonds traces deep subduction of serpentinized ocean floor. Science Advances, 7(14). https://doi.org/10.1126/sciadv.abe9773

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free