Abstract
This study gives a systematic comparison of the Tropospheric Monitoring Instrument (TROPOMI) version 1.2 and Ozone Monitoring Instrument (OMI) QA4ECV tropospheric NO2 column through global chemical data assimilation (DA) integration for the period April-May 2018. DA performance is controlled by measurement sensitivities, retrieval errors, and coverage. The smaller mean relative observation errors by 16g% in TROPOMI than OMI over 60g gN-60g gS during April-May 2018 led to larger reductions in the global root-mean-square error (RMSE) against the assimilated NO2 measurements in TROPOMI DA (by 54g%) than in OMI DA (by 38g%). Agreements against the independent surface, aircraft-campaign, and ozonesonde observation data were also improved by TROPOMI DA compared to the control model simulation (by 12g%-84g% for NO2 and by 7g%-40g% for ozone), which were more obvious than those by OMI DA for many cases (by 2g%-70g% for NO2 and by 1g%-22g% for ozone) due to better capturing spatial and temporal variability by TROPOMI DA. The estimated global total NOx emissions were 15g% lower in TROPOMI DA, with 2g%-23g% smaller regional total emissions, in line with the observed negative bias of the TROPOMI version 1.2 product compared to the OMI QA4ECV product. TROPOMI DA can provide city-scale emission estimates, which were within 10g% differences with other high-resolution analyses for several limited areas, while providing a globally consistent analysis. These results demonstrate that TROPOMI DA improves global analyses of NO2 and ozone, which would also benefit studies on detailed spatial and temporal variations in ozone and nitrate aerosols and the evaluation of bottom-up NOx emission inventories.
Cite
CITATION STYLE
Sekiya, T., Miyazaki, K., Eskes, H., Sudo, K., Takigawa, M., & Kanaya, Y. (2022). A comparison of the impact of TROPOMI and OMI tropospheric NO2 on global chemical data assimilation. Atmospheric Measurement Techniques, 15(6), 1703–1728. https://doi.org/10.5194/amt-15-1703-2022
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.