Seismic networks have significantly improved in the last decade in terms of coverage density, data quality, and instrumental diversity. Moreover, revolutionary advances in ultra-dense seismic instruments, such as nodes and fiber-optic sensing technologies, have recently provided unprecedented high-resolution data for regional and local earthquake monitoring. Nodal arrays have characteristics such as easy installation and flexible apertures, but are limited in power efficiency and data storage and thus most suitable as temporary networks. Fiber-optic sensing techniques, including distributed acoustic sensing, can be operated in real time with an in-house power supply and connected data storage, thereby exhibiting the potential of becoming next-generation permanent networks. Fiber-optic sensing techniques offer a powerful way of filling the observation gap particularly in submarine environments. Despite these technological advancements, various challenges remain. First, the data characteristics of fiber-optic sensing are still unclear. Second, it is challenging to construct software infrastructures to store, transfer, visualize, and process large amount of seismic data. Finally, innovative detection methods are required to exploit the potential of numerous channels. With improved knowledge about data characteristics, enhanced software infrastructures, and suitable data processing techniques, these innovations in seismic instrumentation could profoundly impact observational seismology.
CITATION STYLE
Li, Z. (2021). Recent advances in earthquake monitoring i: Ongoing revolution of seismic instrumentation. Earthquake Science. Earthquake Science. https://doi.org/10.29382/eqs-2021-0011
Mendeley helps you to discover research relevant for your work.