Evolution and mass extinctions as lognormal stochastic processes

18Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

In a series of recent papers and in a book, this author put forward a mathematical model capable of embracing the search for extra-terrestrial intelligence (SETI), Darwinian Evolution and Human History into a single, unified statistical picture, concisely called Evo-SETI. The relevant mathematical tools are: (1) Geometric Brownian motion (GBM), the stochastic process representing evolution as the stochastic increase of the number of species living on Earth over the last 3.5 billion years. This GBM is well known in the mathematics of finances (Black-Sholes models). Its main features are that its probability density function (pdf) is a lognormal pdf, and its mean value is either an increasing or, more rarely, decreasing exponential function of the time. (2) The probability distributions known as b-lognormals, i.e. lognormals starting at a certain positive instant b>0 rather than at the origin. These b-lognormals were then forced by us to have their peak value located on the exponential mean-value curve of the GBM (Peak-Locus theorem). In the framework of Darwinian Evolution, the resulting mathematical construction was shown to be what evolutionary biologists call Cladistics. (3) The (Shannon) entropy of such b-lognormals is then seen to represent the 'degree of progress' reached by each living organism or by each big set of living organisms, like historic human civilizations. Having understood this fact, human history may then be cast into the language of b-lognormals that are more and more organized in time (i.e. having smaller and smaller entropy, or smaller and smaller 'chaos'), and have their peaks on the increasing GBM exponential. This exponential is thus the 'trend of progress' in human history. (4) All these results also match with SETI in that the statistical Drake equation (generalization of the ordinary Drake equation to encompass statistics) leads just to the lognormal distribution as the probability distribution for the number of extra-terrestrial civilizations existing in the Galaxy (as a consequence of the central limit theorem of statistics). (5) But the most striking new result is that the well-known 'Molecular Clock of Evolution', namely the 'constant rate of Evolution at the molecular level' as shown by Kimura's Neutral Theory of Molecular Evolution, identifies with growth rate of the entropy of our Evo-SETI model, because they both grew linearly in time since the origin of life. (6) Furthermore, we apply our Evo-SETI model to lognormal stochastic processes other than GBMs. For instance, we provide two models for the mass extinctions that occurred in the past: (a) one based on GBMs and (b) the other based on a parabolic mean value capable of covering both the extinction and the subsequent recovery of life forms. (7) Finally, we show that the Markov & Korotayev (2007, 2008) model for Darwinian Evolution identifies with an Evo-SETI model for which the mean value of the underlying lognormal stochastic process is a cubic function of the time. In conclusion: we have provided a new mathematical model capable of embracing molecular evolution, SETI and entropy into a simple set of statistical equations based upon b-lognormals and lognormal stochastic processes with arbitrary mean, of which the GBMs are the particular case of exponential growth.

Cite

CITATION STYLE

APA

Maccone, C. (2014). Evolution and mass extinctions as lognormal stochastic processes. International Journal of Astrobiology, 17, 290–309. https://doi.org/10.1017/S147355041400010X

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free