The interaction between two flipping subduction systems shapes the complicated lithospheric structures and dynamics around the Taiwan region. Whether and in what form the Eurasian Plate subducts/deforms under Taiwan Island is critical to the debate of tectonic models. Although an east dipping high-velocity anomaly down to a depth below 200 km has been reported previously, its detailed morphology remains uncertain and leads to different interpretations. With a two-step strategy of nonlinear joint inversion, the slab images of the Eurasian Plate were retrieved in a geometry that is hyperthin in the south, becoming massive and steeper in the central, and severely deformed in the north. The possible depth and dimension of a slab break were also investigated through synthetic tests of whether the slab had torn. Moreover, the slab deflection found at ~23.2°N latitude seems to correspond to where the nonvolcanic tremors and recent NW-SE striking structures have occurred in southern Taiwan. Key Points High-resolution lithospheric images are retrieved by a two-step joint inversionThree-dimensional geometry of the east subducting slab under Taiwan is establishedA possible slab deflection is observed at around latitude 23.2°N
CITATION STYLE
Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Kuo-Chen, H., & Lee, S. J. (2014). Investigating the lithospheric velocity structures beneath the Taiwan region by nonlinear joint inversion of local and teleseismic P wave data: Slab continuity and deflection. Geophysical Research Letters, 41(18), 6350–6357. https://doi.org/10.1002/2014GL061115
Mendeley helps you to discover research relevant for your work.