Internalization of the Kv1.4 potassium channel is suppressed by clustering interactions with PSD-95

95Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The contribution of voltage-dependent ion channels to nerve function depends upon their cell-surface distributions. Nevertheless, the mechanisms underlying channel localization are poorly understood. Two phenomena appear particularly important: the clustering of channels by membrane-associated guanylate kinases (MAGUKs), such as PSD-95, and the regional stabilization of cell-surface proteins by differential suppression of endocytosis. Could these phenomena be related? To test this possibility we examined the effect of PSD- 95 on the internalization rate of Kv1.4 K+ channels in transfected HEK293 cells using cell-surface biotinylation assays. When expressed alone Kv1.4 was internalized with a half-life of 87 min, but, in the presence of PSD-95, Kv1.4 internalization was completely suppressed. Immunochemistry and electrophysiology showed PSD-95 had little effect on total or cell-surface levels of Kv1.4 or on current amplitude, activation, or inactivation kinetics. Clustering was necessary and sufficient to suppress Kv1.4 internalization since C35S-PSD-95, a mutant reported to bind but not cluster Kv1.4, (confirmed by imaging cells co-expressing a functional, GFP-variant- tagged Kv1.4) restored and, surprisingly, enhanced the rate of Kv1.4 internalization (t 1/2 = 16 min). These data argue PSD-95-mediated clustering suppresses Kv1.4 internalization and suggest a fundamentally new role for PSD-95, and perhaps other MAGUKs, orchestrating the stabilization of channels at the cell-surface.

Cite

CITATION STYLE

APA

Jugloff, D. G. M., Khanna, R., Schlichter, L. C., & Jones, O. T. (2000). Internalization of the Kv1.4 potassium channel is suppressed by clustering interactions with PSD-95. Journal of Biological Chemistry, 275(2), 1357–1364. https://doi.org/10.1074/jbc.275.2.1357

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free