Abstract
Targeting of transmembrane proteins to the endoplasmic reticulum (ER) proceeds via either the signal recognition particle (SRP) or the guided entry of tail-anchored proteins (GET) pathway, consisting of Get1 to -5 and Sgt2. While SRP cotranslationally targets membrane proteins containing one or multiple transmembrane domains, the GET pathway posttranslationally targets proteins containing a single C-terminal transmembrane domain termed the tail anchor. Here, we dissect the roles of the SRP and GET pathways in the sorting of homologous, two-membrane-spanning K(+) channel proteins termed Kcv, Kesv, and Kesv-VV. We show that Kcv is targeted to the ER cotranslationally via its N-terminal transmembrane domain, while Kesv-VV is targeted posttranslationally via its C-terminal transmembrane domain, which recruits Get4-5/Sgt2 and Get3. Unexpectedly, nascent Kcv recruited not only SRP but also the Get4-5 module of the GET pathway to ribosomes. Ribosome binding of Get4-5 was independent of Sgt2 and was strongly outcompeted by SRP. The combined data indicate a previously unrecognized cotranslational interplay between the SRP and GET pathways.
Cite
CITATION STYLE
Zhang, Y., Schäffer, T., Wölfle, T., Fitzke, E., Thiel, G., & Rospert, S. (2016). Cotranslational Intersection between the SRP and GET Targeting Pathways to the Endoplasmic Reticulum of Saccharomyces cerevisiae. Molecular and Cellular Biology, 36(18), 2374–2383. https://doi.org/10.1128/mcb.00131-16
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.