If left unmodeled, the delay suffered by electromagnetic waves while crossing the neutral atmosphere negatively affects Global Navigation Satellite System positioning. The modeling of the delay has been carried out by means of empirical models formulated based on climatological information or using information extracted from numerical weather prediction (NWP) models. This paper explores the potential use of meteorological information of several types that will become available with the increasing number of sensors (e.g. a cell phone, or the thermometer of a nearby smart home) in cyberspace. How can we make use of these potentially huge data-sets, which may help to provide the best possible representation of the neutral atmosphere at any given time, as readily and as accurately as possible? This situation falls in the realm of Big Data. A few potential scenarios, a sequential improvement of Marini mapping function coefficients, a self-feeding NWP, and near real-time empirical model updates, are discussed in this paper. The pros and cons of each approach are discussed in comparison with what is done today. Experiments indicate that they have potential for a positive contribution.
CITATION STYLE
Santos, M. C., & Nikolaidou, T. (2018). Modeling neutral-atmospheric electromagnetic delays in a “big data” world. Geo-Spatial Information Science, 21(2), 75–79. https://doi.org/10.1080/10095020.2018.1461780
Mendeley helps you to discover research relevant for your work.