Scalable synthesis of ultrastable lead halide perovskite-zeolite composites via a chemical vapor method in air

9Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A novel chemical vapor method is developed to synthesize ultrastable lead halide perovskite-zeolite (ZSM-5) composites, in which CsPbX3 (X = Cl, Br, I) perovskite quantum dots (QDs) are grown in situ in the nanopores of the ZSM-5 substrate. The key chemical reaction between PbBr2 vapor and the Si–O network in ZSM-5 leads to collapse of the initial zeolite crystal structure, realizing effective confinement and encapsulation of CsPbBr3 QDs and boosting their stability under harsh conditions, including heat, water, polar solvents, and ultraviolet (UV) light. At the same time, the acquired encapsulation structure possesses the channels needed for halogen exchange to regulate the halide ratios of the CsPbX3-ZSM-5 composites. The synthesized CsPbX3-ZSM-5 composites exhibit tunable emission from 400 to 700 nm and narrow full-widths at half-maximum (FWHM). To demonstrate the commercial potential, CsPbX3-ZSM-5 composites synthesized on a large scale are applied in white light-emitting diodes (WLEDs) and multicolor-coded anti-counterfeiting inks.

Cite

CITATION STYLE

APA

Shi, T., Chen, X., Deng, Y., Huang, H., Wang, J., He, R., … Yu, X. F. (2022). Scalable synthesis of ultrastable lead halide perovskite-zeolite composites via a chemical vapor method in air. NPG Asia Materials, 14(1). https://doi.org/10.1038/s41427-022-00433-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free