Abstract
We describe investigations to expand the scope of next generation maleimide cross-linkers for the construction of homogeneous protein-protein conjugates. Diiodomaleimides are shown to offer the ideal properties of rapid bioconjugation with reduced hydrolysis, allowing the cross-linking of even sterically hindered systems. The optimized linkers are exploited to link human serum albumin to antibody fragments (Fab or scFv) as a prospective half-life extension platform, with retention of antigen binding and robust serum stability. Finally, a triprotein conjugate is formed, by linking scFv antibody fragments targeting carcinoembryonic antigen. This tri-scFv is shown to infer a combination of greater antigen avidity and increased in vivo half-life, representing a promising platform for antibody therapeutic development.
Cite
CITATION STYLE
Forte, N., Livanos, M., Miranda, E., Morais, M., Yang, X., Rajkumar, V. S., … Baker, J. R. (2018). Tuning the Hydrolytic Stability of Next Generation Maleimide Cross-Linkers Enables Access to Albumin-Antibody Fragment Conjugates and tri-scFvs. Bioconjugate Chemistry, 29(2), 486–492. https://doi.org/10.1021/acs.bioconjchem.7b00795
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.