Modification of Fraser’s Method for the Atmospheric CO2 Mass Estimation by Using Satellite Data

4Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

One of the most critical greenhouse gases in the atmosphere is carbon dioxide (CO2) due to its long-lasting and negative impact on climate change. The global atmospheric monthly mean CO2 concentration is currently greater than 410 ppm which has changed dramatically since the industrial era. To choose suitable climate change mitigation and adaptation strategies it is necessary to define carbon dioxide mass distribution and global atmospheric carbon dioxide mass. The available method to estimate the global atmospheric CO2 mass was proposed in 1980. In this study, to increase the accuracy of the available method, various observation platforms such as ground-based stations, ground-based tall towers, aircrafts, balloons, ships, and satellites are compared to define the best available observations, considering the temporal and spatial resolution. In the method proposed in this study, satellite observations (OCO2 data), from January 2019 to December 2021, are used to estimate atmospheric CO2 mass. The global atmospheric CO2 mass is estimated around 3.24 × 1015 kg in 2021. For the sake of comparison, global atmospheric CO2 mass was estimated by Fra-ser’s method using NOAA data for the mentioned study period. The proposed methodology in this study estimated slightly greater amounts of CO2 in comparison to Fraser’s method. This comparison resulted in 1.23% and 0.15% maximum and average difference, respectively, between the proposed method and Fraser’s method. The proposed method can be used to estimate the required capacity of systems for carbon capturing and can be applied to smaller districts to find the most critical lo-cations in the world to plan for climate change mitigation and adaptation.

Cite

CITATION STYLE

APA

Pellegrini, M., Aghakhani, A., Guzzini, A., & Saccani, C. (2022). Modification of Fraser’s Method for the Atmospheric CO2 Mass Estimation by Using Satellite Data. Atmosphere, 13(6). https://doi.org/10.3390/atmos13060866

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free