Nitrite consumption and associated isotope changes during a river flood event

14Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

In oceans, estuaries, and rivers, nitrification is an important nitrate source, and stable isotopes of nitrate are often used to investigate recycling processes (e.g. remineralisation, nitrification) in the water column. Nitrification is a twostep process, where ammonia is oxidised via nitrite to nitrate. Nitrite usually does not accumulate in natural environments, which makes it difficult to study the single isotope effect of ammonia oxidation or nitrite oxidation in natural systems. However, during an exceptional flood in the Elbe River in June 2013, we found a unique co-occurrence of ammonium, nitrite, and nitrate in the water column, returning towards normal summer conditions within 1 week. Over the course of the flood, we analysed the evolution of δ15N-NH4+ and δ15N-NO2- in the Elbe River. In concert with changes in suspended particulate matter (SPM) and δ15N SPM, as well as nitrate concentration, δ15N-NO3- and δ18O-NO3-, we calculated apparent isotope effects during net nitrite and nitrate consumption. During the flood event, > 97% of total reactive nitrogen was nitrate, which was leached from the catchment area and appeared to be subject to assimilation. Ammonium and nitrite concentrations increased to 3.4 and 4.4 μmol L-1, respectively, likely due to remineralisation, nitrification, and denitrification in the water column. δ15N-NH4+ values increased up to 12 %, and δ15N-NO2- ranged from -8.0 to -14.2 %. Based on this, we calculated an apparent isotope effect 15ϵ of -10.0±0.1% during net nitrite consumption, as well as an isotope effect 15ϵ of -4.0±0.1% and 18ϵ of -5.3±0.1% during net nitrate consumption. On the basis of the observed nitrite isotope changes, we evaluated different nitrite uptake processes in a simple box model.We found that a regime of combined riparian denitrification and 22 to 36% nitrification fits best with measured data for the nitrite concentration decrease and isotope increase.

Cite

CITATION STYLE

APA

Jacob, J., Sanders, T., & Dähnke, K. (2016). Nitrite consumption and associated isotope changes during a river flood event. Biogeosciences, 13(19), 5649–5659. https://doi.org/10.5194/bg-13-5649-2016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free