Abstract
It is now well established that glasses feature quasilocalized nonphononic excitations—coined “soft spots”—, which follow a universal ω4 density of states in the limit of low frequencies ω. All glass-specific properties, such as the dependence on the preparation protocol or composition, are encapsulated in the nonuniversal prefactor of the universal ω4 law. The prefactor, however, is a composite quantity that incorporates information both about the number of quasilocalized nonphononic excitations and their characteristic stiffness, in an apparently inseparable manner. We show that by pinching a glass—i.e., by probing its response to force dipoles—one can disentangle and independently extract these two fundamental pieces of physical information. This analysis reveals that the number of quasilocalized nonphononic excitations follows a Boltzmann-like law in terms of the parent temperature from which the glass is quenched. The latter, sometimes termed the fictive (or effective) temperature, plays important roles in nonequilibrium thermodynamic approaches to the relaxation, flow, and deformation of glasses. The analysis also shows that the characteristic stiffness of quasilocalized nonphononic excitations can be related to their characteristic size, a long sought-for length scale. These results show that important physical information, which is relevant for various key questions in glass physics, can be obtained through pinching a glass.
Author supplied keywords
Cite
CITATION STYLE
Rainone, C., Bouchbinder, E., & Lerner, E. (2020). Pinching a glass reveals key properties of its soft spots. Proceedings of the National Academy of Sciences of the United States of America, 117(10), 5228–5234. https://doi.org/10.1073/pnas.1919958117
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.