Estimating Gender and Age from Brain Structural MRI of Children and Adolescents: A 3D Convolutional Neural Network Multitask Learning Model

10Citations
Citations of this article
89Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Despite recent advances, assessing biological measurements for neuropsychiatric disorders is still a challenge, where confounding variables such as gender and age (as a proxy for neurodevelopment) play an important role. This study explores brain structural magnetic resonance imaging (sMRI) from two public data sets (ABIDE-II and ADHD-200) with healthy control (HC, N = 894), autism spectrum disorder (ASD, N = 251), and attention deficit hyperactivity disorder (ADHD, N = 357) individuals. We used gray and white matter preprocessed via voxel-based morphometry (VBM) to train a 3D convolutional neural network with a multitask learning strategy to estimate gender, age, and mental health status from structural brain differences. Gradient-based methods were employed to generate attention maps, providing clinically relevant identification of most representative brain regions for models' decision-making. This approach resulted in satisfactory predictions for gender and age. ADHD-200-trained models, evaluated in 10-fold cross-validation procedures on test set, obtained a mean absolute error (MAE) of 1.43 years (±0.22 SD) for age prediction and an area under the curve (AUC) of 0.85 (±0.04 SD) for gender classification. In out-of-sample validation, the best-performing ADHD-200 models satisfactorily predicted age (MAE = 1.57 years) and gender (AUC = 0.89) in the ABIDE-II data set. The models' accuracy was in line with the current state-of-the-art machine learning applications in neuroimaging. Key regions for models' accuracy were presented as a meaningful graphical output. New implementations, such as the use of VBM along with a 3D convolutional neural network multitask learning model and a brain imaging graphical output, reinforce the relevance of the proposed workflow.

Cite

CITATION STYLE

APA

Mendes, S. L., Pinaya, W. H. L., Pan, P., & Sato, J. R. (2021). Estimating Gender and Age from Brain Structural MRI of Children and Adolescents: A 3D Convolutional Neural Network Multitask Learning Model. Computational Intelligence and Neuroscience, 2021. https://doi.org/10.1155/2021/5550914

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free