N-Terminal Truncated Intracellular Matrix Metalloproteinase-2 Induces Cardiomyocyte Hypertrophy, Inflammation and Systolic Heart Failure

47Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Matrix metalloproteinase-2 (MMP-2) is increasingly recognized as a major contributor to progressive cardiac injury within the setting of ischemia-reperfusion injury and ischemic ventricular remodeling. A common feature of these conditions is an increase in oxidative stress, a process that engages multiple pro-inflammatory and innate immunity cascades. We recently reported on the identification and characterization of an intracellular isoform of MMP-2 generated by oxidative stress-mediated activation of an alternative promoter located within the first intron of the MMP-2 gene. Transcription from this site generates an N-terminal truncated 65 kDa isoform of MMP-2 (NTT-MMP-2) that lacks the secretory sequence and the inhibitory prodomain region. The NTT-MMP-2 isoform is intracellular, enzymatically active and localizes in part to mitochondria. Expression of the NTT-MMP-2 isoform triggers Nuclear Factor of Activated T-cell (NFAT) and NF-κB signaling with the expression of a highly defined innate immunity transcriptome, including Interleukin-6, MCP-1, IRF-7 and pro-apoptotic transcripts. To determine the functional significance of the NTT-MMP-2 isoform in vivo we generated cardiac-specific NTT-MMP-2 transgenic mice. These mice developed progressive cardiomyocyte and ventricular hypertrophy associated with systolic heart failure. Further, there was evidence for cardiomyocyte apoptosis and myocardial infiltration with mononuclear cells. The NTT-MMP-2 transgenic hearts also demonstrated more severe injury following ex vivo ischemia-reperfusion injury. We conclude that a novel intracellular MMP-2 isoform induced by oxidant stress directly contributes, in the absence of superimposed injury, to cardiomyocyte hypertrophy. inflammation, systolic heart failure and enhanced susceptibility to ischemia-reperfusion injury.

Cite

CITATION STYLE

APA

Lovett, D. H., Mahimkar, R., Raffai, R. L., Cape, L., Zhu, B. Q., Jin, Z. Q., … Karliner, J. S. (2013). N-Terminal Truncated Intracellular Matrix Metalloproteinase-2 Induces Cardiomyocyte Hypertrophy, Inflammation and Systolic Heart Failure. PLoS ONE, 8(7). https://doi.org/10.1371/journal.pone.0068154

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free