Designing membrane controllers for single- and multi-robot systems is an application area initiated in 2011 at the Laboratory of Natural Computing and Robotics (natuRO) of the Politehnica University of Bucharest. In this paper, an overview of natuRO’s research on the design of robot controllers based on various models of membrane systems is given. After an introduction to robotics and natural computing, this paper follows multiple directions. Firstly, a description of three membrane system simulators is given, taking into account their evolution, comparative capabilities, and application areas for each of them. Secondly, the main part of this paper is a synopsis of the applications of membrane systems in robot control, while an emphasis is paid to the new membrane computing models introduced at natuRO, Enzymatic Numerical P Systems and XP colonies, and their specific use in single- and multiple-robot applications. Thirdly, the paper continues with a critical overview of the performances of membrane controllers as compared to traditional ways to control single- and multiple-robot systems, current challenges and possible ways to overcome these. Example avenues for future related works are given in the conclusion.
CITATION STYLE
Buiu, C., & Florea, A. G. (2019). Membrane computing models and robot controller design, current results and challenges. Journal of Membrane Computing, 1(4), 262–269. https://doi.org/10.1007/s41965-019-00029-8
Mendeley helps you to discover research relevant for your work.