Inference with non-probability samples and survey data integration: a science mapping study

5Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In recent years, survey data integration and inference based on non-probability samples have gained considerable attention. Because large probability-based samples can be cost-prohibitive in many instances, combining a probabilistic survey with auxiliary data is appealing to enhance inferences while reducing the survey costs. Also, as new data sources emerge, such as big data, inference and statistical data integration will face new challenges. This study aims to describe and understand the evolution of this research field over the years with an original approach based on text mining and bibliometric analysis. In order to retrieve the publications of interest (books, journal articles, proceedings, etc.), the Scopus database is considered. A collection of 1023 documents is analyzed. Through the use of such methodologies, it is possible to characterize the literature and identify contemporary research trends as well as potential directions for future investigation. We propose a research agenda along with a discussion of the research gaps which need to be addressed.

Cite

CITATION STYLE

APA

Salvatore, C. (2023). Inference with non-probability samples and survey data integration: a science mapping study. Metron, 81(1), 83–107. https://doi.org/10.1007/s40300-023-00243-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free