A comparison of three 67/68Ga-labelled exendin-4 derivatives for β-cell imaging on the GLP-1 receptor: the influence of the conjugation site of NODAGA as chelator

32Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Various diseases derive from pathologically altered β-cells. Their function can be increased, leading to hyperinsulinism, or decreased, resulting in diabetes. Non-invasive imaging of the β-cell-specific glucagon-like peptide receptor-1 (GLP-1R) would allow the assessment of both β-cell mass and derived tumours, potentially improving the diagnosis of various conditions. We tested three new 67/68Ga-labelled derivatives of exendin-4, an agonist of GLP-1R, in vitro and in vivo. We determined the influence of the chelator NODAGA conjugated to resident lysines either at positions 12 and 27 or the C-terminally attached lysine at position 40 on the binding and kinetics of the peptide. Methods: Binding and internalisation of 67Ga-labelled Ex4NOD12, Ex4NOD27 and Ex4NOD40 were tested on Chinese hamster lung (CHL) cells stably transfected to express the GLP-1 receptor (GLP-1R). In vivo biodistribution of 68Ga-labelled peptides was investigated in CD1 nu/nu mice with subcutaneous CHL-GLP-1R positive tumours; the specificity of the binding to GLP-1R was determined by pre-injecting excess peptide. Results: All peptides showed good in vitro binding affinities to GLP-1R in the range of 29 to 54 nM. 67/68Ga-Ex4NOD40 and 67/68Ga-Ex4NOD12 show excellent internalisation (>30%) and high specific uptake in GLP-1R positive tissue, but high activity was also found in the kidneys. Conclusions: We show that of the three peptides, Ga-Ex4NOD40 and Ga-Ex4NOD12 demonstrate the most favourable in vitro properties and in vivo binding to GLP-1R positive tissue. Therefore, we conclude that the lysines at positions 12 and 40 might preferentially be utilised for modifying exendin-4.

Cite

CITATION STYLE

APA

Jodal, A., Lankat-Buttgereit, B., Brom, M., Schibli, R., & Béhé, M. (2014). A comparison of three 67/68Ga-labelled exendin-4 derivatives for β-cell imaging on the GLP-1 receptor: the influence of the conjugation site of NODAGA as chelator. EJNMMI Research, 4(1), 1–10. https://doi.org/10.1186/s13550-014-0031-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free