The high-temperature methanation of CO is an important reaction in the processes used to produce substitute natural gas, while the Ni-based catalysts prepared using the conventional impregnation method tend to deactivate under high-temperature reaction conditions. This paper describes the design and assembly of ordered mesoporous alumina (OMA) using highly disperse ∼5 nm nickel nanoparticles (Ni NPs), via a one-pot, evaporation-induced self-assembly (EISA) method. Small-angle X-ray diffraction (XRD), transmission electron microscope (TEM), and N2 adsorption and desorption results revealed that this catalytic material had highly ordered mesopores, which were retained even after long-term stability tests. The catalyst exhibited excellent sintering-resistant and anti-coking properties in high-temperature CO methanation reactions (60% CO conversion after 50 hours of accelerated deactivation at 700°C). The improved catalytic performance was attributed to the matrix of the OMA, which effectively improved the dispersion of the nickel particles, and prevented the Ni NPs from sintering, via a particle migration and coalescence mechanism. The Ni-OMA catalyst demonstrated here shows promise for high-temperature methanation.
CITATION STYLE
Tian, H., Li, S., Zeng, L., Ma, H., & Gong, J. (2015). Assembly of ordered mesoporous alumina-supported nickel nanoparticles with high temperature stability for CO methanation. Science China Materials, 58(1), 9–15. https://doi.org/10.1007/s40843-014-0014-1
Mendeley helps you to discover research relevant for your work.