Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts

974Citations
Citations of this article
237Readers
Mendeley users who have this article in their library.

Abstract

This study describes a simple approach to generate relatively pure cultures of cardiomyocytes from differentiating murine embryonic stem (ES) cells. A fusion gene consisting of the α-cardiac myosin heavy chain promoter and a cDNA encoding aminoglycoside phosphotransferase was stably transfected into pluripotent ES cells. The resulting cell lines were differentiated in vitro and subjected to G418 selection. Immunocytological and ultrastructural analyses demonstrated that the selected cardiomyocyte cultures (> 99% pure) were highly differentiated. G418 selected cardiomyocytes were tested for their ability to form grafts in the hearts of adult dystrophic mice. The fate of the engrafted cells was monitored by antidystrophin immunohistology, as well as by PCR analysis with primers specific for the myosin heavy chain-aminoglycoside phosphotransferase transgene. Both analyses revealed the presence of ES-derived cardiomyocyte grafts for as long as 7 wk after implantation, the latest time point analyzed. These studies indicate that a simple genetic manipulation can be used to select essentially pure cultures of cardiomyocytes from differentiating ES cells. Moreover, the resulting cardiomyocytes are suitable for the formation of intracardiac grafts. This selection approach should be applicable to all ES-derived cell lineages.

Cite

CITATION STYLE

APA

Klug, M. G., Soonpaa, M. H., Koh, G. Y., & Field, L. J. (1996). Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. Journal of Clinical Investigation, 98(1), 216–224. https://doi.org/10.1172/JCI118769

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free