Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development

120Citations
Citations of this article
198Readers
Mendeley users who have this article in their library.

Abstract

Anopheles stephensi mosquitoes expressing m1C3, m4B7, or m2A10 single-chain antibodies (scFvs) have significantly lower levels of infection compared to controls when challenged with Plasmodium falciparum, a human malaria pathogen. These scFvs are derived from antibodies specific to a parasite chitinase, the 25 kDa protein and the circumsporozoite protein, respectively. Transgenes comprising m2A10 in combination with either m1C3 or m4B7 were inserted into previously-characterized mosquito chromosomal "docking" sites using site-specific recombination. Transgene expression was evaluated at four different genomic locations and a docking site that permitted tissue- and sex-specific expression was researched further. Fitness studies of docking site and dual scFv transgene strains detected only one significant fitness cost: adult docking-site males displayed a late-onset reduction in survival. The m4B7/m2A10 mosquitoes challenged with P. falciparum had few or no sporozoites, the parasite stage infective to humans, in three of four experiments. No sporozoites were detected in m1C3/m2A10 mosquitoes in challenge experiments when both genes were induced at developmentally relevant times. These studies support the conclusion that expression of a single copy of a dual scFv transgene can completely inhibit parasite development without imposing a fitness cost on the mosquito.

Cite

CITATION STYLE

APA

Isaacs, A. T., Jasinskiene, N., Tretiakov, M., Thiery, I., Zettor, A., Bourgouin, C., & James, A. A. (2012). Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development. Proceedings of the National Academy of Sciences of the United States of America, 109(28). https://doi.org/10.1073/pnas.1207738109

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free