Reinforced concrete shell elements are relevant in several civil and industrial structures. It is important to know the methods for designing and verifying such elements. In this context, the present paper aims at describing the iterative three-layer method proposed by Colombo et al. This method is based on the Model Code/1990, and it can be applied in the design of shell elements. An additional method for verifying reinforced concrete shell elements is also proposed and discussed. This one is based on the multilayer method proposed by Kollegger et al. Formulations as well as numerical examples are presented for both methods. The design proposed by Colombo et al. is verified by using the methodology based on the multilayer method. Although both methods lead to the equilibrium between applied and resistance loads using approximately the same amount of reinforcement, especially for small neutral axes in relation to the element thickness, one may conclude that the three-layer design method has limitations due to not considering strain compatibility along the thickness of the element and due to the impossibility to calculate the compression reinforcement. Although the multilayer method overcomes such limitations, it is a verification method, and more studies about its use in the design of reinforced concrete shell elements are necessary.
CITATION STYLE
Craveiro, M. V., Bittencourt, T. N., & Bella, J. C. D. (2021). Design and verification of reinforced concrete shell elements. Revista IBRACON de Estruturas e Materiais, 14(3). https://doi.org/10.1590/S1983-41952021000300005
Mendeley helps you to discover research relevant for your work.