A method to explore head-to-head ϕ back-bonding from uranium f-orbitals into allyl π* orbitals has been pursued. Anionic allyl groups were coordinated to uranium with tethered anilide ligands, then the products were investigated by using NMR spectroscopy, single-crystal XRD, and theoretical methods. The (allyl)silylanilide ligand, N-((dimethyl)prop-2-enylsilyl)-2,6-diisopropylaniline (LH), was used as either the fully protonated, singly deprotonated, or doubly deprotonated form, thereby highlighting the stability and versatility of the silylanilide motif. A free, neutral allyl group was observed in UI2(L1)2 (1), which was synthesized by using the mono-deprotonated ligand [K][N-((dimethyl)prop-2-enyl)silyl)-2,6-diisopropylanilide] (L1). The desired homoleptic sandwich complex U[L2]2 (2) was prepared from all three ligand precursors, but the most consistent results came from using the dipotassium salt of the doubly deprotonated ligand [K]2[N-((dimethyl)propenidesilyl)-2,6-diisopropylanilide] (L2). This allyl-based sandwich complex was studied by using theoretical techniques with supporting experimental spectroscopy to investigate the potential for phi (ϕ) back-bonding. The bonding between UIV and the allyl fragments is best described as ligand-to-metal electron donation from a two carbon fragment-localized electron density into empty f-orbitals.
CITATION STYLE
Popov, I. A., Billow, B. S., Carpenter, S. H., Batista, E. R., Boncella, J. M., Tondreau, A. M., & Yang, P. (2022). An Allyl Uranium(IV) Sandwich Complex: Are ϕ Bonding Interactions Possible? Chemistry - A European Journal, 28(27). https://doi.org/10.1002/chem.202200114
Mendeley helps you to discover research relevant for your work.