Bodacious-instance coverage mechanism for wireless sensor network

48Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Due to unavoidable environmental factors, wireless sensor networks are facing numerous tribulations regarding network coverage. These arose due to the uncouth deployment of the sensor nodes in the wireless coverage area that ultimately degrades the performance and confines the coverage range. In order to enhance the network coverage range, an instance (node) redeployment-based Bodacious-instance Coverage Mechanism (BiCM) is proposed. The proposed mechanism creates new instance positions in the coverage area. It operates in two stages; in the first stage, it locates the intended instance position through the Dissimilitude Enhancement Scheme (DES) and moves the instance to a new position, while the second stage is called the depuration, when the moving distance between the initial and intended instance positions is sagaciously reduced. Further, the variations of various parameters of BiCM such as loudness, pulse emission rate, maximum frequency, grid points, and sensing radius have been explored, and the optimized parameters are identified. The performance metric has been meticulously analyzed through simulation results and is compared with the state-of-the-art Fruit Fly Optimization Algorithm (FOA) and, one step above, the tuned BiCM algorithm in terms of mean coverage rate, computation time, and standard deviation. The coverage range curve for various numbers of iterations and sensor nodes is also presented for the tuned Bodacious-instance Coverage Mechanism (tuned BiCM), BiCM, and FOA. The performance metrics generated by the simulation have vouched for the effectiveness of tuned BiCM as it achieved more coverage range than BiCM and FOA.

Cite

CITATION STYLE

APA

Ashraf, S., Alfandi, O., Ahmad, A., Khattak, A. M., Hayat, B., Kim, K. H., & Ullah, A. (2020). Bodacious-instance coverage mechanism for wireless sensor network. Wireless Communications and Mobile Computing, 2020. https://doi.org/10.1155/2020/8833767

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free