We were successful in synthesizing periodic layered zinc acetate nanobelts through a hydrothermal solution process. One-dimensional structured ZnO nanoparticle aggregate was obtained by simple thermal annealing of the above-mentioned layered ZnO acetate nanobelts at 300 °C. The morphology, microstructure, and composition of the synthesized ZnO and its precursors were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and infrared spectroscopy, respectively. Low angle X-ray diffraction spectra reveal that as-synthesized zinc acetate has a layered structure with two interlayer d-spacings (one is 1.32 nm and the other is 1.91 nm). SEM and TEM indicate that nanobelt precursors were 100-200 nm in width and possesses length up to 30 μm. Calcination of precursor in air results in the formation of one-dimensional structured ZnO nanoparticle aggregates. In addition, the as-prepared ZnO nanoparticle aggregates exhibit high photocatalytic activity for the photocatalytic degradation of methyl orange (MO).
CITATION STYLE
Zhang, Y., Zhu, F., Zhang, J., & Xia, L. (2008). Converting layered zinc acetate nanobelts to one-dimensional structured ZnO nanoparticle aggregates and their photocatalytic activity. Nanoscale Research Letters, 3(6), 201–204. https://doi.org/10.1007/s11671-008-9136-2
Mendeley helps you to discover research relevant for your work.