The mechanisms underlying the development of multidrug resistance in acute myeloid leukemia are not fully understood. Here we analyzed the expressions of mitochondrial ATPsyn-β in adriamycin-resistant cell line HL-60/ADM and its parental cell line HL-60. Meanwhile we compared the differences of mitochondrial ATPsyn-β expression and ATP synthase activity in 110 acute myeloid leukemia (AML, non-M3) patients between relapsed/refractory and those in remission. Our results showed that down-regulation of ATPsyn-β expression by siRNA in HL-60 cells increased cell viability and apoptotic resistance to adriamycin, while up-regulation of mitochondrial ATPsyn-β in HL-60/ADM cells enhanced cell sensitivity to adriamycin and promoted apoptosis. Mitochondrial ATPsyn-β expression and ATP synthase activity in relapsed/refractory acute myeloid leukemia patients were downregulated. This downregulated ATPsyn-β expression exhibited a positive correlation with the response to adriamycin of primary cells. A lower expression of ATPsyn-β in newly diagnosed or relapsed/refractory patients was associated with a shorter first remission duration or overall survival. Our findings show mitochondrial ATPsyn-β plays an important role in the mechanism of multidrug resistance in AML thus may present both a new marker for prognosis assessment and a new target for reversing drug resistance. © 2013 Xiao et al.
CITATION STYLE
Xiao, X., Yang, J., Li, R., Liu, S., Xu, Y., Zheng, W., … Zhang, G. (2013). Deregulation of mitochondrial ATPsyn-β in acute myeloid leukemia cells and with increased drug resistance. PLoS ONE, 8(12). https://doi.org/10.1371/journal.pone.0083610
Mendeley helps you to discover research relevant for your work.