Regulation of Opsin Gene Expression by DNA Methylation and Histone Acetylation

16Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

One important role of epigenetic regulation is controlling gene expression in development and homeostasis. However, little is known about epigenetics’ role in regulating opsin expression. Cell cultures (HEK 293, Y79, and WERI) producing different levels of opsins were treated with 5-aza-2’-deoxycytidine (5-Aza-dc) and/or sodium butyrate (SB) or suberoylanilide hydroxamic acid (SAHA) for 72 h. Global DNA methylation, site-specific methylation, and expressions of opsins were measured by LUMA assay, bisulfite pyrosequencing, and qPCR, respectively. Mouse retinal explants from wild-type P0/P1 pups were ex vivo cultured with/without 5-Aza-dc or SAHA for 6 days. The morphology of explants, DNA methylation, and expressions of opsins was examined. The drugs induced global DNA hypomethylation or increased histone acetylation in cells, including DNA hypomethylation of rhodopsin (RHO) and L-opsin (OPN1LW) and a concomitant increase in their expression. Further upregulation of RHO and/or OPN1LW in HEK 293 or WERI cells was observed with 5-Aza-dc and either SB or SAHA combination treatment. Mouse retinal explants developed normally but had drug-dependent differential DNA methylation and expression patterns of opsins. DNA methylation and histone acetylation directly regulate opsin expression both in vitro and ex vivo. The ability to manipulate opsin expression using epigenetic modifiers enables further study into the role of epigenetics in eye development and disease.

Cite

CITATION STYLE

APA

Song, J., Vanbuskirk, J. A., & Merbs, S. L. (2022). Regulation of Opsin Gene Expression by DNA Methylation and Histone Acetylation. International Journal of Molecular Sciences, 23(3). https://doi.org/10.3390/ijms23031408

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free