Abstract
Super-concentrated “water-in-salt” electrolytes recently spurred resurgent interest for high energy density aqueous lithium-ion batteries. Thermodynamic stabilization at high concentrations and kinetic barriers towards interfacial water electrolysis significantly expand the electrochemical stability window, facilitating high voltage aqueous cells. Herein we investigated LiTFSI/H2O electrolyte interfacial decomposition pathways in the “water-in-salt” and “salt-in-water” regimes using synchrotron X-rays, which produce electrons at the solid/electrolyte interface to mimic reductive environments, and simultaneously probe the structure of surface films using X-ray diffraction. We observed the surface-reduction of TFSI− at super-concentration, leading to lithium fluoride interphase formation, while precipitation of the lithium hydroxide was not observed. The mechanism behind this photoelectron-induced reduction was revealed to be concentration-dependent interfacial chemistry that only occurs among closely contact ion-pairs, which constitutes the rationale behind the “water-in-salt” concept.
Author supplied keywords
Cite
CITATION STYLE
Steinrück, H. G., Cao, C., Lukatskaya, M. R., Takacs, C. J., Wan, G., Mackanic, D. G., … Toney, M. F. (2020). Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces. Angewandte Chemie - International Edition, 59(51), 23180–23187. https://doi.org/10.1002/anie.202007745
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.