Gaucher disease is associated with Parkinson’s disease (PD) by mutations in glucocerebrosidase (GCase). The gene encoding GCase, glucosidase beta acid (GBA), is an important risk factor for PD. Findings from large studies have shown that patients with PD have an increased frequency of mutations in GBA and that GBA mutation carriers exhibit diverse parkinsonian phenotypes and Lewy body pathology. Although the mechanism for this association remains elusive, some hypotheses have been proposed to explain it, including gain of function caused by GBA mutations, which increases α-synuclein (α-syn) aggregation, loss of function due to lysosomal enzyme deficiency, which affects α-syn clearance, and even a bidirectional feedback loop, but each of these hypotheses has its limitations. It is also worth noting that many findings have implicated the interaction between α-syn and GCase, indicating the essential role of the interaction in the pathogenesis of GBA-associated parkinsonism. Therefore, the current review focuses on α-syn and GCase, and it provides some new thoughts that may be helpful for understanding the α-syn-GCase interaction and unraveling the exact mechanism underlying GBA-associated parkinsonism.
CITATION STYLE
Li, Y., Li, P., Liang, H., Zhao, Z., Hashimoto, M., & Wei, J. (2015, August 24). Gaucher-Associated Parkinsonism. Cellular and Molecular Neurobiology. Springer New York LLC. https://doi.org/10.1007/s10571-015-0176-8
Mendeley helps you to discover research relevant for your work.