Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications

396Citations
Citations of this article
176Readers
Mendeley users who have this article in their library.
Get full text

Abstract

An updated version of the spectral (bin) microphysics cloud model developed at the Hebrew University of Jerusalem [the Hebrew University Cloud Model (HUCM)] is described. The model microphysics is based on the solution of the equation system for size distribution functions of cloud hydrometeors of seven types (water drops, plate-, columnar-, and branch-like ice crystals, aggregates, graupel, and hail/frozen drops) as well as for the size distribution function of aerosol particles playing the role of cloud condensational nuclei (CCN). Each size distribution function contains 33 mass bins. The conditions allowing numerical reproduction of a narrow droplet spectrum up to the level of homogeneous freezing in deep convective clouds developed in smoky air are discussed and illustrated using as an example Rosenfeld and Woodley's case of deep Texas clouds. The effects of breakup on precipitation are illustrated by the use of a new collisional breakup scheme. Variation of the microphysical structure of a melting layer is illustrated by using the novel melting procedure. It is shown that an increase in the aerosol concentration leads to a decrease in precipitation from single clouds both under continental and maritime conditions. To provide similar precipitation, a cloud developed in smoky air should have a higher top height. The mechanisms are discussed through which aerosols decrease precipitation efficiency. It is shown that aerosols affect the vertical profile of the convective heating caused by latent heat release. © 2004 American Meteorological Society.

Cite

CITATION STYLE

APA

Khain, A., Pokrovsky, A., Pinsky, M., Seifert, A., & Phillips, V. (2004). Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. Journal of the Atmospheric Sciences, 61(24), 2963–2982. https://doi.org/10.1175/JAS-3350.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free